Regulatory off-gas analysis from the evaporation of Hanford simulated waste spiked with organic compounds.

نویسندگان

  • Hiroshi H Saito
  • T Bond Calloway
  • Daro M Ferrara
  • Alexander S Choi
  • Thomas L White
  • Luther V Gibson
  • Mark A Burdette
چکیده

After strontium/transuranics removal by precipitation followed by cesium/technetium removal by ion exchange, the remaining low-activity waste in the Hanford River Protection Project Waste Treatment Plant is to be concentrated by evaporation before being mixed with glass formers and vitrified. To provide a technical basis to permit the waste treatment facility, a relatively organic-rich Hanford Tank 241-AN-107 waste simulant was spiked with 14 target volatile, semi-volatile, and pesticide compounds and evaporated under vacuum in a bench-scale natural circulation evaporator fitted with an industrial stack off-gas sampler at the Savannah River National Laboratory. An evaporator material balance for the target organics was calculated by combining liquid stream mass and analytical data with off-gas emissions estimates obtained using U.S. Environmental Protection Agency (EPA) SW-846 Methods. Volatile and light semi-volatile organic compounds (<220 degrees C BP, >1 mm Hg vapor pressure) in the waste simulant were found to largely exit through the condenser vent, while heavier semi-volatiles and pesticides generally remain in the evaporator concentrate. An OLI Environmental Simulation Program (licensed by OLI Systems, Inc.) evaporator model successfully predicted operating conditions and the experimental distribution of the fed target organics exiting in the concentrate, condensate, and off-gas streams, with the exception of a few semi-volatile and pesticide compounds. Comparison with Henry's Law predictions suggests the OLI Environmental Simulation Program model is constrained by available literature data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Behavior of technetium in nuclear waste vitrification processes

Nearly 100 tests were performed with prototypical melters and off-gas system components to investigate the extents to which technetium is incorporated into the glass melt, partitioned to the off-gas stream, and captured by the off-gas treatment system components during waste vitrification. The tests employed several simulants, spiked with 99mTc and Re (a potential surrogate), of the low activit...

متن کامل

WSRC-MS-2003-00595, Revision 0 CHARACTERIZATION AND PERFORMANCE OF FLUIDIZED BED STEAM REFORMING (FBSR) PRODUCT AS A FINAL WASTE FORM

A demonstration of Fluidized Bed Steam Reforming (FBSR) was recently completed on a Hanford Low Activity Waste (LAW) simulant. This technology produced stable mineral phases (feldspathoids) when co-fired with clay. The mineral phases are cage structured and were determined to retain anions such as SO4 as well as cations such as Re (simulant for Tc) in the mineral cages. The mineral phases are p...

متن کامل

Estimation of landfill gas generation in a municipal solid waste disposal site by LandGEM mathematical model

Anaerobic decomposition of organic compounds in landfills is responsible for generation of greenhouse gases. The present study aimed to determine the total gas and methane emission from a landfill located in Hamedan (west of Iran) from 2011 to 2030. LandGEM 3.02 model was used to estimate the gas emission with the volumetric methane percent of 60%, production potential of 107, and methane gener...

متن کامل

Thermal and Radiolytic Gas Generation in Hanford High-level Waste

Mixed radioactive and chemical wastes stored in tanks across the DOE complex generate hydrogen, ammonia, nitrous oxide, and nitrogen by a complex series of radiolytic and thermolytic reactions. Flammable conditions may result when these gases accumulate in the dome space of the waste tanks. A phenomenological model was developed that successfully predicts gas generation rates for many of Hanfor...

متن کامل

HNF - 4 107 - FP Estimating Risk Using Bounding Calculations

This paper describes a methodology for estimating the potential risk to workers and the public from igniting organic solvents in any of the 177 underground waste storage tanks at the Hanford Site in southeastern Washington state. The Hanford Site is one of the U.S. Department of Energy's former production facilities for nuclear materials. The tanks contain mixed radioactive wastes. Risk is meas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the Air & Waste Management Association

دوره 54 10  شماره 

صفحات  -

تاریخ انتشار 2004